% Figure 23.15 A pattern-directed program for simple resolution
% theorem proving.
:- op( 900, fy, not).
:- op( 800, xfx, --->).
:- op( 120, xfy, v).
:- op( 100, fy, ~). % Negation
% not Goal): negation as failure;
% Note: This is often available as a built-in predicate,
% often written as prefix operator "\+", e.g. \+ likes(mary,snakes)
not Goal :-
Goal, !, fail
;
true.
% The following directive is required by some Prologs
:- dynamic clause/1, done/3.
% Production rules for resolution theorem proving
% Contradicting clauses
[ clause( X), clause( ~X) ] --->
[ write('Contradiction found'), stop].
% Remove a true clause
[ clause( C), in( P, C), in( ~P, C) ] --->
[ retract( C) ].
% Simplify a clause
[ clause( C), delete( P, C, C1), in( P, C1) ] --->
[ replace( clause( C), clause( C1)) ].
% Resolution step, a special case
[ clause( P), clause( C), delete( ~P, C, C1), not done( P, C, P) ] --->
[ assert( clause( C1)), assert( done( P, C, P)) ].
% Resolution step, a special case
[ clause( ~P), clause( C), delete( P, C, C1), not done( ~P, C, P) ] --->
[ assert( clause( C1)), assert( done( ~P, C, P)) ].
% Resolution step, general case
[ clause(C1), delete( P, C1, CA),
clause(C2), delete( ~P, C2, CB), not done( C1,C2,P) ] --->
[ assert( clause(CA v CB)), assert( done( C1, C2, P)) ].
% Last rule: resolution process stuck
[] ---> [ write('Not contradiction'), stop].
% delete( P, E, E1) if
% deleting a disjunctive subexpression P from E gives E1
delete( X, X v Y, Y).
delete( X, Y v X, Y).
delete( X, Y v Z, Y v Z1) :-
delete( X, Z, Z1).
delete( X, Y v Z, Y1 v Z) :-
delete( X, Y, Y1).
% in( P, E) if P is a disjunctive subexpression in E
in( X, X).
in( X, Y) :-
delete( X, Y, _).