Minimax principle
Description
A straightforward implementation of the minimax principle.
Source: PROLOG programming for artificial intelligence, 3rd Edition, Harlow, 2001, ISBN 0-201-40375-7.
Download
Listing
% Figure 22.3 A straightforward implementation of the minimax principle.
% minimax( Pos, BestSucc, Val):
% Pos is a position, Val is its minimax value;
% best move from Pos leads to position BestSucc
minimax( Pos, BestSucc, Val) :-
moves( Pos, PosList), !, % Legal moves in Pos produce PosList
best( PosList, BestSucc, Val)
;
staticval( Pos, Val). % Pos has no successors: evaluate statically
best( [ Pos], Pos, Val) :-
minimax( Pos, _, Val), !.
best( [Pos1 | PosList], BestPos, BestVal) :-
minimax( Pos1, _, Val1),
best( PosList, Pos2, Val2),
betterof( Pos1, Val1, Pos2, Val2, BestPos, BestVal).
betterof( Pos0, Val0, Pos1, Val1, Pos0, Val0) :- % Pos0 better than Pos1
min_to_move( Pos0), % MIN to move in Pos0
Val0 > Val1, ! % MAX prefers the greater value
;
max_to_move( Pos0), % MAX to move in Pos0
Val0 < Val1, !. % MIN prefers the lesser value
betterof( Pos0, Val0, Pos1, Val1, Pos1, Val1). % Otherwise Pos1 better than Pos0