Minihyper ilp program

Description

MINIHYPER - a simple ILP program.

Source: PROLOG programming for artificial intelligence, 3rd Edition, Harlow, 2001, ISBN 0-201-40375-7.

Download

Program source code: minihyper_ilp_program.pl

Listing

% Figure  19.4  MINIHYPER - a simple ILP program.
 
:- op( 900, fy, not).
 
% not Goal): negation as failure; 
%   Note: This is often available as a built-in predicate,
%   often written as prefix operator "\+", e.g. \+ likes(mary,snakes)
 
not Goal  :-
  Goal, !, fail
  ; 
  true.
 
% Program MINIHYPER
 
% induce( Hyp):
%   induce a consistent and complete hypothesis Hyp by gradually
%   refining start hypotheses
 
induce( Hyp)  :-
  iter_deep( Hyp, 0).           % Iterative deepening starting with max. depth 0
 
iter_deep( Hyp, MaxD) :-
  write( 'MaxD = '), write( MaxD), nl,
  start_hyp( Hyp0),
  complete( Hyp0),                  % Hyp0 covers all positive examples
  depth_first( Hyp0, Hyp, MaxD)     % Depth-limited depth-first search
  ;
  NewMaxD is MaxD + 1,
  iter_deep( Hyp, NewMaxD).
 
% depth_first( Hyp0, Hyp, MaxD):
%   refine Hyp0 into consistent and complete Hyp in at most MaxD steps
 
depth_first( Hyp, Hyp, _)  :-
  consistent( Hyp).
 
depth_first( Hyp0, Hyp, MaxD0)  :-
  MaxD0 > 0,
  MaxD1 is MaxD0 - 1,
  refine_hyp( Hyp0, Hyp1),
  complete( Hyp1),                % Hyp1 covers all positive examples
  depth_first( Hyp1, Hyp, MaxD1).
 
complete( Hyp)  :-        % Hyp covers all positive examples
  not (ex( E),                          % A positive example
       once( prove( E, Hyp, Answer)),   % Prove it with Hyp
       Answer \== yes).                 % Possibly not proved
 
consistent( Hyp)  :-      % Hypothesis does not possibly cover any negative example
  not (nex( E),                          % A negative example
       once( prove( E, Hyp, Answer)),    % Prove it with Hyp
       Answer \== no).                   % Possibly provable
 
% refine_hyp( Hyp0, Hyp):
%   refine hypothesis Hyp0 into Hyp
 
refine_hyp( Hyp0, Hyp)  :-
  conc( Clauses1, [Clause0/Vars0 | Clauses2], Hyp0),    % Choose Clause0 from Hyp0
  conc( Clauses1, [Clause/Vars | Clauses2], Hyp),       % New hypothesis
  refine( Clause0, Vars0, Clause, Vars).                % Refine the Clause  
 
% refine( Clause, Args, NewClause, NewArgs):
%   refine Clause with arguments Args giving NewClause with NewArgs
 
% Refine by unifying arguments
 
refine( Clause, Args, Clause, NewArgs)  :-
  conc( Args1, [A | Args2], Args),               % Select a variable A
  member( A, Args2),                             % Match it with another one
  conc( Args1, Args2, NewArgs).
 
% Refine by adding a literal
 
refine( Clause, Args, NewClause, NewArgs)  :-
  length( Clause, L),
  max_clause_length( MaxL),
  L < MaxL,
  backliteral( Lit, Vars),                    % Background knowledge literal
  conc( Clause, [Lit], NewClause),            % Add literal to body of clause
  conc( Args, Vars, NewArgs).                 % Add literal's variables
 
% Default parameter settings
 
max_proof_length( 6).   % Max. proof length, counting calls to 'non-prolog' pred.
 
max_clause_length( 3).  % Max. number of literals in a clause

Comments

pl/prolog/pllib/minihyper_ilp_program.txt · ostatnio zmienione: 2019/06/27 15:50 (edycja zewnętrzna)
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0